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Abstract 23 

Two satellites are currently monitoring surface soil moisture (SM) using L-band 24 

observations: SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space 25 

Agency), CNES (Centre national d'études spatiales), and CDTI (the Spanish government 26 

agency with responsibility for space) satellite launched on November 2, 2009 and SMAP 27 

(Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) 28 

satellite successfully launched in January 2015. In this study, we used a multilinear 29 

regression approach to retrieve SM from SMAP data to create a global dataset of SM, which 30 

is consistent with SM data retrieved from SMOS. This was achieved by calibrating 31 

coefficients of the regression model using the CATDS (Centre Aval de Traitement des 32 

Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness 33 

temperatures (TB) at 40o incidence angle, over the 2013 - 2014 period. Next, this model was 34 

applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from SMAP 35 

(referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM 36 

(SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and 37 

(ii) the operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB 38 

model (L-MEB algorithm) (SMOSL3). This inter-comparison was made against in situ soil 39 

moisture measurements from more than 400 sites spread over the globe, which are used here 40 

as a reference soil moisture dataset. The in situ observations were obtained from the 41 

International Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of 42 

America (PBO_H2O, SCAN, SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa 43 

(DAHRA), and in Europe (REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement 44 

was analyzed in terms of four classical statistical criteria: Root Mean Squared Error (RMSE), 45 

Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the 46 

comparison of these various products with in situ observations show that the performance of 47 
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both SMAP products i.e. SMAP_SCA and SMAP_Reg is similar and marginally better to 48 

that of the SMOSL3 product particularly over the PBO_H2O, SCAN, and USCRN sites. 49 

However, SMOSL3 SM was closer to the in situ observations over the DAHRA and Oznet 50 

sites. We found that the correlation between all three datasets and in situ measurements is 51 

best (R > 0.80) over the Oznet sites and worst (R = 0.58) over the SNOTEL sites for 52 

SMAP_SCA and over the DAHRA and SMOSMANIA sites (R= 0.51 and R= 0.45 for 53 

SMAP_Reg and SMOSL3, respectively). The Bias values showed that all products are 54 

generally dry, except over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Finally, 55 

our analysis provided interesting insights that can be useful to improve the consistency 56 

between SMAP and SMOS datasets. 57 

 58 
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1. Introduction 73 

Lately, the importance of soil moisture has become increasingly apparent, because 74 

soil moisture is a key variable in better understanding of the land-atmosphere interactions 75 

(Chen et al., 2016; Hirschi et al., 2014). The exchange of heat and water between the land 76 

surface and atmosphere is influenced by soil moisture (Berg et al., 2014; Hupet & 77 

Vanclooster, 2002; Seneviratne et al., 2010; Western et al., 2004), which was recognized as 78 

an Essential Climate Variables (ECV) in 2010 (GCOS, 2010).  79 

Global soil moisture information has become available via different active and passive 80 

microwave remote sensing techniques with good temporal and spatial resolutions (Bartalis et 81 

al., 2007; Kerr et al., 2001; Njoku et al., 2002; Njoku et al., 2003; Owe et al., 2001; Ulaby et 82 

al., 1996; Wigneron et al., 1995). However, the required temporal and spatial resolutions 83 

strongly depend on the applications (e.g., agricultural applications vs. climate studies). 84 

Recently, new global soil moisture datasets, with a typical target accuracy of 0.04 m3/m3 85 

(Jackson et al., 2016; Kerr et al., 2010; Kerr et al., 2012) over bare, low vegetation cover, and 86 

sparsely vegetated areas, have been produced based on microwave satellite observations at L-87 

band (1.4 GHz, 21 cm). L-band is considered optimal for soil moisture monitoring (Kerr et 88 

al., 2001; Njoku et al., 2003; Wang & Choudhury, 1981) due to its higher sensitivity to soil 89 

moisture and penetration into vegetation and soil (Kerr, 2007; Njoku et al., 2003; Owe & Van 90 

de Griend, 1998; Wang & Choudhury, 1981) than other higher frequencies (e.g., C-band, X-91 

band, etc.). The new L-band based datasets include surface soil moisture from two 92 

spaceborne missions: ESA’s (European Space Agency) Soil Moisture and Ocean Salinity 93 

(SMOS) (Kerr et al., 2012) and NASA’s (National Aeronautics and Space Administration) 94 

Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). The SMOS and SMAP 95 

satellites were launched in 2009 and 2015, respectively, and have been providing microwave 96 

brightness temperature (TB) observations since then. Soil moisture information is retrieved 97 
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from SMAP’s and SMOS’s TB observations based on the principle that soil TB is mainly 98 

determined by soil moisture via soil dielectric constant (Njoku et al., 2002; Schmugge et al., 99 

1976; Ulaby et al., 1996). Nevertheless, the sensitivity of the SMOS and SMAP TB 100 

observations to soil moisture is reduced by perturbing factors such as vegetation (attenuation 101 

of the emission from the soil and additional upwelling emission toward the space-borne 102 

sensor), surface roughness (scattering effects increase the emitting surface area), topography, 103 

soil texture, soil bulk density, and soil temperature (Choudhury et al., 1979; Grant et al., 104 

2008; Holmes et al., 2006; Jackson & Schmugge, 1991; Kerr et al., 2012; Njoku & Li, 1999; 105 

Njoku et al., 2003; Wang et al., 1983; Wigneron et al., 2007; Wigneron et al., 2011). 106 

There are several remotely sensed soil moisture products available (in addition to 107 

SMOS and SMAP); however, these cover different periods and are not consistent in terms of 108 

spatial and temporal resolutions, period availability, grid, etc. Given the wide availability of 109 

soil moisture datasets retrieved from different microwave observations, studies focusing on 110 

the merging of these products are important to advance in the field of producing long-term 111 

and consistent datasets of several climatic variables. A great effort has been made by the 112 

scientific community in the last decade to build a coherent and consistent long term soil 113 

moisture datasets such as the ESA Climate Change Initiative (CCI) soil moisture data record 114 

(e.g., Enenkel et al., 2015; Liu et al., 2012; http://www.esa-soilmoisture-cci.org/; Wagner et 115 

al., 2012), deemed necessary for global soil moisture monitoring, drought monitoring, climate 116 

forecasts, etc. The CCI product is estimated based on a posteriori merging i.e. merging the 117 

retrieved soil moisture datasets based on the relative errors of soil moisture products and a 118 

CDF (cumulative distribution function)-matching used to rescale the different soil moisture 119 

products into a common climatology. An alternative approach is to use data fusion i.e. 120 

merging of microwave datasets prior to the retrieval (e.g., through the use of a common 121 

retrieval algorithm as proposed later in this paper). This method allows better exploitation of 122 
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the complimentary of information provided by the different sensors not included in the 123 

posteriori combination approach (Aires et al., 2012; Kolassa et al., 2013). A recent project 124 

was established by ESA to investigate the integration of SMOS soil moisture estimates within 125 

the CCI soil moisture data record using three approaches that implement the data fusion 126 

strategy:  127 

(i) multi-linear regression (Al-Yaari et al., 2016); 128 

(i) neural networks (Rodríguez-Fernández et al., 2015); and 129 

(ii) the Land Parameter Retrieval Model (LPRM; Van der Schalie et al., 2016). 130 

Al-Yaari et al. (2016), for instance, demonstrated the efficiency of physically-based 131 

multiple-linear regression equations (Wigneron et al., 2004), referred to here as Linear 132 

Regression Method (LRM) in the following, to retrieve soil moisture from the Advanced 133 

Microwave Scanning Radiometer Earth Observing System (AMSR-E) TB observations. The 134 

LRM has several advantages: quickness, simplicity, and no strong demand on auxiliary 135 

datasets (Al-Yaari et al., 2016) such as the normalized difference vegetation index (NDVI) 136 

product used by the SMAP Single Channel Algorithm (SMAP_SCA), to estimate vegetation 137 

effects. The purpose of that initial study was to extend the SMOS soil moisture product into 138 

the past i.e., 2003-2009, using AMSR-E TB observations. The current study follows the same 139 

strategy to retrieve soil moisture from SMAP TB observations (SMAP_Reg) with a purpose 140 

to improve the temporal sampling rate together with the SMOS soil moisture product at the 141 

global scale. The main interest in the SMAP-Reg soil moisture product is that it is fully 142 

consistent with the SMOS Level 3 soil moisture product, as the regression equations are 143 

calibrated based on SMOS Level 3 data (soil moisture and TB). Furthermore, the idea here is 144 

to re-build a coherent and consistent soil moisture data set rather than to develop a new 145 

algorithm or to surpass the well-established radiative transfer models (e.g. the L-band 146 

Microwave Emission of the Biosphere (L-MEB) model, LRPM, etc.).  147 
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To this end, two specific objectives of this study are listed below: 148 

(i) produce a soil moisture product (SMAP_Reg) from SMAP TB that is consistent 149 

with SMOS soil moisture retrievals using physically-based regression equations; and 150 

(ii) compare SMAP_Reg with operational SMAP and SMOS soil moisture retrievals 151 

against ground-based soil moisture measurements. 152 

Since SMAP soil moisture products are relatively recent, their evaluation and their 153 

inter-comparison with other soil moisture data sets are required (Chan et al., 2016; Zeng et 154 

al., 2016). To advance our goal, therefore, the second objective of this study is two-fold: to 155 

evaluate the SMAP_Reg product, and to carry out a first evaluation of the agreement 156 

between SMAP and SMOS level 3 soil moisture products on global scale and against 157 

ground-based measurements (sparse and dense networks). The aim is not to establish which 158 

product is more accurate with respect to in situ but to understand the spatio-temporal 159 

patterns of SMAP relative to SMOS and how SMAP differs from SMOS globally. The 160 

agreement and degree of dispersion between the SMAP and SMOS soil moisture products 161 

are analyzed here in terms of four classical statistical criteria: Root Mean Squared Error 162 

(RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R) during the 163 

overlapping period (from Apr 2015 to Jul 2016).  164 

The datasets, the local regression method, and the evaluation metrics used in this study 165 

are described in Section 2. Results are presented in Section 3. Finally, discussion and 166 

conclusions are provided in Section 4 and Section 5, respectively.  167 
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2. Materials and methods 168 

2.1 Datasets  169 

2.1.1 SMOS level 3 TB and soil moisture products  170 

SMOS is a joint ESA, CNES (Centre national d'études spatiales), and CDTI (the 171 

Spanish government agency with responsibility for space) mission that was launched on 172 

November 2, 2009 (Kerr et al., 2012). The SMOS satellite carries an interferometric 173 

radiometer that operates at L-band, with multiple incidence angles, a spatial resolution of 35 174 

km at the center of the field of view, a revisit time of 3 days, and ascending and descending 175 

overpass at 6:00 AM (local time) and 6:00 PM, respectively (Kerr et al., 2001; Kerr et al., 176 

2010). Global SMOS Level 3 gridded multi-angular TB and soil moisture (top 0-5 cm surface 177 

layer) products (SMOSL3; version R04+OPER) are generated and provided by the CATDS 178 

(Centre Aval de Traitement des Données) center in France (Kerr et al., 2013). The SMOSL3 179 

products are delivered for both orbits i.e. ascending and descending, projected on a global 180 

EASE (Equal Area Scalable Earth) grid (V2) 25 km, by the CATDS, and are available online 181 

via http://www.catds.fr/. The IFS (Integrated Forecast System) soil temperature product from 182 

the European Centre for Medium-Range Weather Forecasts (ECMWF) is used in the 183 

SMOSL3 algorithm to retrieve the SMOSL3 soil moisture. 184 

SMOSL3 TB product provides multi-angular TB data (in Kelvin) at the top of the 185 

atmosphere, i.e. not at the surface level and without correction for select reflected 186 

extraterrestrial sky (e.g., cosmic and galactic) and atmosphere contributions, but after 187 

projection onto the Earth reference frame (unlike the operational Level 2 product). The multi-188 

angular TB are binned and averaged in 5º-width incidence angle bins with the center ranging 189 

from 2.5о to 62.5о. CATDS has recently provided SMOSL3 TB at 40°, and for this purpose 190 

http://www.catds.fr/
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the multi-angular TB are binned and averaged in 2º-width incidence angle bins. SMOSL3 soil 191 

moisture products (provided in m3/m3) are derived from the multiangular inversion of the L-192 

MEB model (L-MEB algorithm) (Wigneron et al., 2007), i.e. the same method used for Level 193 

2 soil moisture retrieval (Kerr et al., 2012), but are improved by using several revisits 194 

simultaneously (Kerr et al., 2016). SMOS TBs for ascending passes only and their associated 195 

soil moisture retrievals were used in this study (Al-Yaari et al., 2014a; Al-Yaari et al., 2014b) 196 

for a better consistency with SMAP soil moisture retrieval datasets, which are only provided 197 

at 6:00 AM. 198 

Radio Frequency Interferences (RFI) originating from man-made emissions have been 199 

shown to affect the quality of the SMOS TB observations (Oliva et al., 2012). RFI probability 200 

is used to filter the SMOS datasets. This probability is the total number of deleted TBs due to 201 

suspected RFI on a certain period divided by the total number of TB measurements acquired 202 

during the same period available in the SMOS L1C datasets. In this study, SMOS TB and soil 203 

moisture data were excluded when the RFI probability is higher than 20% following Kerr et 204 

al. (2016). The reader is referred to the Algorithm Theoretical Based Document (Kerr et al., 205 

2013) for more details on the SMOSL3 products. 206 

2.1.2 SMAP level 3 TB and soil moisture products  207 

SMAP is a NASA satellite that was launched on January 31, 2015. The SMAP 208 

satellite at launch carried two instruments: a Synthetic Aperture Radar and a radiometer 209 

operating at L-band, with a fixed incidence angle of 40º, a spatial resolution of 40 km, a 210 

revisit of 2-3 days and ascending and descending overpass at 6:00 PM (local time) and 6:00 211 

AM, respectively (Entekhabi et al., 2010; Piepmeier et al., 2016). Soil moisture (top 0-5 cm 212 

surface layer) and freeze/thaw were supposed to be provided with three spatial resolutions 213 

~3 km (high-resolution from radar), ~9 km (intermediate-resolution from radar and 214 
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radiometer), and ~36 km (low-resolution from radiometer), projected on the EASE V2 grid. 215 

However, the radar instrument onboard SMAP satellite stopped transmitting data on Jul 7, 216 

2015 due to a problem in the radar's high-power amplifier (Chan et al., 2016). Currently, soil 217 

moisture products are retrieved from SMAP TB radiometer data using the baseline Single 218 

Channel Algorithm (SCA) V-pol (Chan et al., 2016; Jackson, 1993). The global daily SMAP 219 

level 3 V3 gridded descending brightness temperature (at both H and V polarizations) and 220 

soil moisture (which is a compilation of 24 hrs of L2 soil moisture orbits) products, 221 

henceforth referred to here as SMAP_SCA, on EASE 2 grid (36 km) were used in this study. 222 

Unlike the SMOSL3 TBs product, the TBs provided within the SMAP L3 product are 223 

calibrated at the surface level, i.e. corrected for Sky radiation and atmosphere contributions 224 

using auxiliary near surface information (De Lannoy et al., 2015). The SMAP L2 half-orbit 225 

soil moisture product (and also the SMAP L3 soil product) uses ancillary data (including soil 226 

temperature information) from the NASA’s Global Modeling and Assimilation Office 227 

(GMAO/GEOS-5) Forward Processing product, which is provided with SMAP datasets. They 228 

are freely available from the National Snow and Ice Data Center (NSIDC). For more details 229 

on the SMAP mission and SMAP passive products, the reader is referred to (Chan et al., 230 

2016; Piepmeier et al., 2016) and the SMAP Level 2 & 3 Soil Moisture (Passive) Algorithm 231 

Theoretical Basis Document (SMAP_ATBD) available here: 232 

https://nsidc.org/data/docs/daac/smap/sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-233 

en.pdf.  234 

Furthermore, it should be noted that both the SMOS and SMAP TB and soil moisture 235 

datasets were filtered prior to the regression analysis and the evaluations. A pixel was masked 236 

out when: 237 

(i) it is not considered as "Land" in the United States Geological Survey (USGS) 238 

Land-Sea mask (water fraction above 10%)"; 239 

https://nsidc.org/data/docs/daac/smap/sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf
https://nsidc.org/data/docs/daac/smap/sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf
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(ii) it is classified as “Urban and Built-Up”, “Snow and Ice”, “Water”, “Permanent 240 

Wetlands”, “Evergreen Needleleaf Forest”, or “Evergreen Broadleaf Forest” 241 

according to the International Geosphere Biosphere Programme (IGBP) land 242 

cover map; 243 

(iii) the number of retrievals < 15 over the whole retrieval period; 244 

(iv)  it corresponds to a date where the MERRA-Land soil temperature is < 274 K (to 245 

avoid frost and frozen conditions); 246 

(v) SMOS TB is estimated to be not sensitive to the surface effects according to the 247 

mask developed by Parrens et al. (2016); and 248 

(vi) it corresponds to a date that is not recommended for retrieval based on the SMAP 249 

quality flag. 250 

2.1.3 MERRA-Land soil temperature  251 

The soil temperature product was extracted from the NASA MERRA-Land product, 252 

which is a land-surface model forced with atmospheric reanalysis fields (precipitation 253 

corrected using gauges) (Reichle et al., 2011). MERRA_Land is a supplemental land surface 254 

data product of the Modern-Era Retrospective analysis for Research and Applications 255 

(MERRA) datasets, produced by the Goddard Earth Observing System model and 256 

assimilation system. MERRA-Land uses an updated catchment land surface model (version 257 

Fortuna-2.5) and includes a gauge-based precipitation data from the NOAA Climate 258 

Prediction Centre. The accuracy and precision of MERRA-Land soil temperature were 259 

assessed and analyzed by Parinussa et al. (2011) and Holmes et al. (2012). These studies 260 

found the performance of MERRA-Land to be similar to the ECMWF soil temperature 261 

products. The MERRA-Land product is available for the 1980-February 2016 period, 262 

provided with high temporal resolution (hourly) and a horizontal resolution of 2/3° longitude 263 
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by 1/2° latitude (http://gmao.gsfc.nasa.gov/research/merra/merra-land.php). The follow-up 264 

re-analysis product is MERRA2. It has improved soil temperature estimates, and uses gage 265 

information to correct the precipitation (Reichle et al., 2016), similarly to (but not exactly the 266 

same as) MERRA-Land. At the time of writing, the MERRA2 product was not yet available. 267 

Consequently, this study uses MERRA-Land auxiliary information.  268 

 2.1.4 ECMWF soil temperature 269 

The global atmospheric reanalysis ERA-Interim soil temperature datasets obtained from 270 

ECMWF were used in this study. The Hydrology-Tiled ECMWF Scheme for Surface 271 

Exchange over Land (H-TESSEL) is used by the ECMWF forecasts to solve for several 272 

parameters including a four-layer soil temperature profile (Balsamo et al., 2009). In this 273 

study, the soil temperature from the first layer (0–0.07 m) provided at 00:00, 06:00, 12:00, 274 

18:00 UTC over a grid with a space sampling of 0.25×0.25 degrees was used. The ECMWF 275 

product is available from 1979 to present. The ECMWF datasets can be freely accessed at: 276 

http://apps.ecmwf.int/datasets/ and more information can be found in Berrisford et al. (2011).  277 

2.1.5 Ground-based measurements 278 

Validation of remotely sensed soil moisture products against ground-based 279 

measurements is a necessary step before any use. Nowadays several soil moisture networks 280 

share ground-based soil moisture measurements via the website of the International Soil 281 

Moisture Network (ISMN; Dorigo et al., 2011; Dorigo et al., 2015). ISMN is an ESA funded 282 

project initiated through the SMOS CAL/VAL. Data can be freely obtained from ISMN at 283 

https://ismn.geo.tuwien.ac.at/. All sites from ISMN that provide soil moisture within the 284 

period of Apr 2015- Jul 2016 were used in this study to evaluate the remotely sensed soil 285 

moisture products. Most of the sites are located in different regions with different vegetation, 286 

climate, and soil conditions.  287 

http://gmao.gsfc.nasa.gov/research/merra/merra-land.php
http://apps.ecmwf.int/datasets/
https://ismn.geo.tuwien.ac.at/
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Eleven networks in North America, Australia, Africa, and Europe were used namely: 288 

the PBO_H2O (http://xenon.colorado.edu/portal) network (Larson et al., 2008), the SCAN 289 

(Soil Climate Analysis Network) network (http://www.wcc.nrcs.usda.gov/scan/) (Schaefer et 290 

al., 2007), the SNOTEL (Snow Telemetry) network (http://www.wcc.nrcs.usda.gov/snow/), 291 

the USCRN (U.S. climate reference) network (Bell et al., 2013), the newly built RSMN 292 

(Romanian Soil Moisture & Temperature Observation Network) network 293 

(http://assimo.meteoromania.ro/) in Romania, the FMI (Finnish Meteorological Institute) 294 

network (Rautiainen et al., 2012) in Finland, the Oznet (Australian Moisture Monitoring 295 

Network) network (Smith et al., 2012) in Australia, the SMOSMANIA (Soil Moisture 296 

Observing System–Meteorological Automatic Network Integrated Application) network 297 

(Albergel et al., 2008; Calvet et al., 2007) in France, the DAHRA network (Tagesson et al., 298 

2015) in Senegal, the iRON (Integrated Roaring Fork Observation Network) network 299 

http://ironagci.blogspot.co.at/, and the REMEDHUS (Soil Moisture Measurement Stations 300 

network of the University of Salamanca) network (Sanchez et al., 2012) in Spain. To ensure 301 

the high quality of the in situ measurements and to minimize the systematic differences 302 

between them and the remotely-sensed soil moisture products, we restricted the validation 303 

step to sites with a top soil layer of ~ 0 - 5 cm and with a minimum number of temporal 15 304 

measurements. ISMN quality flags associated with the soil moisture data were applied 305 

(Dorigo et al., 2013). Consequently, ~ 400 (out of ~ 1000) sites from 11 networks were used 306 

for the evaluation. Moreover, if multiple sensors fall within one pixel, each sensor is treated 307 

independently: in this paper, unlike (De Lannoy & Reichle, 2015) we will not seek to 308 

construct reliable statistical confidence intervals. Fig. 1 shows the locations of the different in 309 

situ soil moisture sites.  310 

311 

http://xenon.colorado.edu/portal
http://www.wcc.nrcs.usda.gov/scan/
http://ironagci.blogspot.co.at/
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 312 

Fig. 1 IGBP (International Geosphere Biosphere Programme) land cover classification 313 

(Friedl et al., 2010) with the locations of the different in situ soil moisture sites (a) over 314 

Australia (b), the USA (c), and Africa and Europe (d). 315 

 316 

 317 

 318 

 319 

 320 

 321 
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2.2 Methodology 322 

The methodology used in this study to retrieve soil moisture from SMAP TB based on 323 

regression coefficients, obtained from SMOS TB and soil moisture, is schematized in Fig. 2.  324 

It consists of two steps: the calibration and the data production.  325 

 326 

 327 

 328 

2.2.1 Calibration 329 

A regression equation was analytically derived from the general (tau-omega) model 330 

equations (Mo et al., 1982) by Wigneron et al. (2004): 331 

Fig. 2 The LRM (local regression method) algorithm: inputs (in blue), calibration 
step (in red), and soil moisture production step (in green). 
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Where a0, a1, and a2 are regression coefficients, and the first (second) term on the right hand 332 

side of Eq. (1) represents the surface reflectivity at horizontal (vertical) polarization ( P), 333 

described as: 334 

     
   

  
                                                                                                                          335 

where: 336 

 TBP is the brightness temperature at polarization p (H or V) at 40o incidence angle and TG is 337 

the surface soil temperature.  338 

We used a multiple linear regression i.e., a statistical technique that predicts the 339 

outcome of a response (dependent) variable using two or more independent (explanatory) 340 

variables. The coefficients of Eq. (1) were estimated using ordinary least squares techniques 341 

that minimize the sum of the squared errors. Eq. (1) was used in this study to retrieve soil 342 

moisture from the SMAP L-band TB observations. The coefficients a0, a1, and a2 of Eq. (1) 343 

were calibrated per land cover category (obtained from the IGBP land cover map (see Fig. 1)) 344 

using the most recent available re-processed SMOS datasets: the SMOS TB in both V and H 345 

polarizations at incidence angle of 40о and soil moisture, and MERRA TG datasets. The 346 

calibration was done during the 2013-2014 period. Note that this calibration was made here 347 

per land cover category, and not on a pixel to pixel basis as it was made previously in most 348 

LRM studies based on space-borne observations (Al-Yaari et al., 2016; Parrens et al., 2012; 349 

Saleh et al., 2006). This choice was made here to increase the spatial coverage. SMOS TBs 350 

observations are highly affected by RFI and therefore most of the regions in Europe and Asia 351 

would be masked out. To overcome this issue, we removed pixels with high RFIs and then we 352 

calibrated the regression equation with the rest of pixels within each land cover category. 353 

Lastly, we applied the obtained coefficients to the SMAP TB data (which are less impacted by 354 

RFI) for all the pixels for each land cover category. 355 
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2.2.2 Soil moisture production  356 

Soil moisture was computed from the SMAP TB data for the Apr 2015 - Jul 2016 357 

period using the regression coefficients computed in the calibration step using Eq. (1). This 358 

was done given the fact that we have all inputs for Eq. (1) to compute the soil moisture: TB 359 

observations at both polarizations from SMAP, TG datasets based on the GMAO GEOS-5 360 

(here in after referred to as GEOS-5) model provided with the SMAP datasets (or any other 361 

source like ECMWF), and the coefficients (a0, a1, and a2) from the calibration step.  362 

 363 

2.3 Metrics used for evaluating the soil moisture data set 364 

 365 

The SMAP_Reg soil moisture product, obtained using the LRM algorithm, was 366 

compared with the SMAP and SMOS official Level 3 soil moisture products, and all three 367 

remotely sensed soil moisture products were evaluated against in situ observations. This was 368 

achieved using classical metrics: Root Mean Square Error (RMSE; m3/m3), Bias (m3/m3), 369 

UnbRMSE (m3/m3) (Entekhabi et al., 2010), and the (Pearson) correlation coefficient (R), 370 

which can be computed as follows:  371 
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where the overbar indicates the mean;  375 

 Si is the ith remotely sensed soil moisture value; 376 

 Oi is the ith in situ observed or the remotely sensed soil moisture value; 377 

 N is the total number of observations; and 378 

 σo and σs are the standard deviations of the in situ observed or remotely sensed soil 379 

moisture values, respectively.  380 

Moreover, Taylor diagrams (Taylor, 2001) were used in this study to compare in a 381 

comprehensive way the remotely sensed soil moisture and the in situ soil moisture 382 

measurements. Three statistics are summarized in a Taylor Diagram: the normalized standard 383 

deviation (SDV) displayed as a radial distance, the correlation coefficient (R) displayed as an 384 

angle in the polar plot, and the centered RMSE (displayed as the distance to the point 385 

(observed) where R and SDV are equal to one). The performance of the remotely sensed soil 386 

moisture products is considered closest to ground measurements with the shortest distance to 387 

R = 1 and SDV = 1. 388 

 389 

 390 

 391 

 392 
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3 Results  393 

3.1 SMAP and SMOS inter-comparison 394 

Before presenting the regression analyses and evaluating the SMAP_Reg soil 395 

moisture product, it is necessary to evaluate and compare the measured (retrieved) Tb's (soil 396 

moisture) from SMOS and SMAP, which is the key to understand the different results, as it is 397 

the only input that changes between the SMAP and SMOS-based SM retrieval algorithms. 398 

For instance, this could help explain the differences in Bias, RMSE and correlation obtained 399 

between the different soil moisture products evaluated in this study over the different 400 

networks. For this purpose, global maps of R, RMSE, Bias, and UnbRMSE between SMAP 401 

and SMOS TBs and soil moisture were produced. Fig. 3 shows the global maps between 402 

SMOS and SMAP TBs during the Apr 2015 Jul 2016 period at both polarizations vertical (V-403 

pol; left) and horizontal (H-pol; right): (a& e) correlation, (b& f) RMSE, (c& g) Bias, and (d 404 

&h) UnbRMSE. In general, there is a good agreement between SMOS and SMAP TBs at 405 

both V-pol and H-pol particularly in terms of temporal dynamics (R mostly > 0.8). The 406 

RMSE and UnbRMSE values are lower between SMAP and SMOS at V-pol than between 407 

SMAP and SMOS at H-pol over some regions (e.g., region of western North Africa). The 408 

RMSE (UnbRMSE) values range mostly between 2 and 8 (4) K over most of the globe except 409 

over some regions (e.g., Western Europe). SMAP presents cold (warm) bias with respect to 410 

SMOS over most of the globe (high latitude regions). 411 
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 412 

 413 

Fig. 3 Global inter-comparison between SMOS and SMAP TBs during the Apr 2015-Jul 414 

2016 at both polarizations vertical (V-pol; left) and horizontal (H-pol; right): (a & e) 415 
correlation, (b & f) RMSE, (c & g) Bias, and (d &h) UnbRMSE. Pixels with a number of 416 

observations lower than 15 are indicated as blank areas. 417 

 418 

 419 
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Fig. 4 displays global inter-comparison between the operational SMOS (L3) and 420 

SMAP (SCA) soil moisture retrievals during the Apr 2015- Jul 2016 period: (a) correlation, 421 

(b) RMSE, (c) Bias, and (d) UnbRMSE. The correlations between SMOS and SMAP soil 422 

moisture retrievals (Fig. 4a) are very high (between 0.8 and 1) over Australia, central Asia 423 

and USA, and the Sahel, while moderate and low correlations are found over the other 424 

regions. SMAP is much wetter under regions where the vegetation is moderate or high as 425 

well as on coastlines, whereas SMOS is wetter over India and Central America, and far north 426 

(see Fig. 4c). It can be seen in Figs. 4(b& d) that higher values of RMSE and UnbRMSE are 427 

found in regions where the vegetation is moderate or high than over arid and semi-arid 428 

regions. The retrieved soil moisture data from both SMOS and SMAP seem to agree 429 

generally well in terms of unbRMSE (mostly < 0.05 m3/m3).  430 

 431 

Fig. 4 Global inter-comparison between SMOS and SMAP soil moisture retrievals during the 432 
Apr 2015-Jul 2016: (a) correlation, (b) RMSE, (c) Bias, and (d) UnbRMSE. Pixels with a 433 

number of observations lower than 15 are indicated as blank areas. 434 
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3.2  Regression calibration 435 

The regression coefficients a0 (intercept coefficient), a1 (coefficient for the H 436 

polarized TB), and a2 (coefficient for the V polarized TB) in Eq. (1), obtained using SMOSL3 437 

TB (V & H) and soil moisture in the calibration step, are presented in Table 1 and Fig. 5. A 438 

unique coefficient value for each land cover category was obtained. It can be seen that the 439 

values of the coefficient for the different land cover categories can be clearly distinguished. 440 

For instance, lowest coefficients values for a0 and a2 were obtained over “Closed 441 

shrublands”and highest over “Deciduous needleleaf forest” for a2 and “Deciduous broadleaf 442 

forest” for a0 while lowest values for a1 were obtained over “Cropland/Natural vegetation 443 

mosaic” and highest over “Deciduous broadleaf forest”.  444 

Table 1 Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil 445 

moisture in 2013-2014: a0 represents the intercept, a1 and a2 represent the slope of regression 446 
line corresponding to H-pol and V- pol, respectively. 447 

Land cover class a0 a1 a2 

Deciduous Needleleaf forest 2.671 1.322 0.937 

Deciduous Broadleaf forest 5.184 2.713 0.889 

Mixed forest 3.848 2.485 0.492 

Closed shrublands 0.789 1.068 0.242 

Open shrublands 0.952 0.864 0.478 

Woody savannas 3.212 1.903 0.643 

Savannas 1.821 1.534 0.336 

Grasslands 0.937 1.032 0.391 

Croplands 0.815 0.867 0.421 

Cropland/Natural vegetation mosaic 0.874 0.626 0.558 

Barren or sparsely vegetated 1.049 1.830 0.384 

 448 

 449 



23 
 

 450 

 451 

Fig. 5 Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil moisture 452 
in 2013-2014 (a): intercept (a0), (b) slope of regression line corresponding to the horizontal 453 
polarization (a1), and (c) slope of regression line corresponding to the vertical polarization 454 

(a2).  455 

In order to make a first evaluation of the quality of the calibration step, and before 456 

applying the LRM algorithm to the SMAP TB data, we applied the LRM equations to the 457 

SMOS TB data. The soil moisture product (SMOS_Reg) was retrieved from SMOSL3 TB 458 
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using the regression coefficients computed from Eq. (1) over the calibration period. Then, 459 

SMOS_Reg was compared with the reference SMOSL3 soil moisture for the same period in 460 

terms of RMSE and correlation coefficient (P-value < 0.05).  461 

 462 

Fig. 6 Comparison between the soil moisture values computed from the SMOS TB data using 463 

LRM (SMOS_Reg) and the SMOS official level 3 soil moisture product in 2013-2014: (a) 464 

correlation, R and (b) RMSE (m3/m3). Pixels with a number of observations lower than 15 are 465 

indicated as blank areas. 466 

 467 

Looking at the correlation map in Fig. 6a, a remarkable agreement (R > 0.8) can be 468 

seen between SMOS_Reg and SMOSL3 over most of the globe except over some forests 469 

areas (e.g., boreal regions) where the correlation values drop below 0.4. Looking at the 470 

RMSE map in Fig. 6b, the spatial patterns of the RMSE values are also found to be in 471 

correspondence with the vegetation distribution: low RMSE values (~ 0.05 m3/m3) are found 472 

over areas with low vegetation while high RMSE values are found over moderately vegetated 473 

regions. 474 
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3.3 SMAP_Reg soil moisture evaluation  475 

This section presents an evaluation of the SMAP_Reg soil moisture product, which 476 

was based on applying the LRM algorithm to the SMAP Level 3 TB observations (see 477 

Section 2.2.2) and using two soil temperature products: GEOS-5 and ECMWF. Note that the 478 

LRM algorithm was calibrated with MERRA-Land soil temperature; here, we only change 479 

the input, not the linear regression coefficients, as it will become clear that the temperatures 480 

estimated in GEOS-5 and ECMWF do not differ much in the first order. Both these 481 

SMAP_Reg soil moisture products were first compared with the SMAP operational Level 3 482 

soil moisture product (SMAP_SCA) to investigate the similarity/dissimilarity between the 483 

various SMAP soil moisture products. This was done by computing the R and RMSE 484 

statistical criteria between the SMAP_Reg and SMAP_SCA soil moisture products at the 485 

global scale. The temporal correlation between SMAP_Reg and SMAP_SCA soil moisture 486 

retrievals is shown in Fig. 7a using GEOS-5 and in Fig. 7c using ECMWF. Figs. 7a & c show 487 

that the temporal dynamics of both SMAP_Reg and SMAP_SCA soil moisture products are 488 

generally very similar with R values larger than 0.8 over most of the globe. However, weaker 489 

correlations between SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5) than between 490 

SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) can be seen over a few regions 491 

particularly over high latitude areas and Sahara. Fig. 7b shows that the distribution of the 492 

RMSE values between SMAP_Reg and SMAP_SCA soil moisture products present clear 493 

spatial patterns: low RMSE values over deserts and savannahs (e.g., the Sahara, Australia, 494 

Southern Africa, etc.), whereas high values of RMSE values were generally found over 495 

vegetated areas. Looking at both Figs. 7a &c (correlations) and Figs. 7b &d (RMSE), there is 496 

a general good agreement between SMAP_Reg and SMAP_SCA over regions with low to 497 

moderate amounts of vegetation cover.  498 

 499 



26 
 

 500 

Fig. 7 Comparison between the SMAP-derived soil moisture applying LRM (SMAP_Reg) 501 

using two different soil temperature products: GEOS-5 (left) and ECMWF (right) and the 502 

SMAP level 3 soil moisture product (SMAP_SCA) from Apr 2015 to Jul 2016: (top) 503 

correlation, R (-) and (bottom) RMSE (m3/m3). 504 

 505 

The SMAP_Reg soil moisture product with GEOS-5 soil temperature as auxiliary 506 

input was additionally evaluated against  507 

i) in situ soil moisture observations using more than 400 sites from eleven 508 

networks spread over the globe (see Section 2.1.4); and 509 

ii) the operational SMAP and SMOS Level 3 soil moisture products at these 510 

individual site locations. The SMAP_SCA and the SMOSL3 soil moisture 511 

products were considered in the evaluation in order to investigate the 512 

consistency in time variations between the new soil moisture product 513 

(SMAP_Reg) and the original ones at different sites.  514 

Taylor diagrams (see Section 2.2.3) given in Fig. 8 show the statistics for the sites 515 

individually. Fig. 8 shows values of SDV, R, and the centered RMSE between the remotely 516 

sensed soil moisture products and measured soil moisture values over all sites used in this 517 
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study. In Fig. 8, the performance of SMAP_SCA (blue symbols), SMAP_Reg (red symbols), 518 

and SMOSL3 (green symbols) varies from one site to another and from one network to 519 

another as demonstrated by the uneven distribution of the sites (shown as circles) in the plots. 520 

Looking at the Taylor diagram over the SCAN and SNOTEL sites, the correlations values 521 

range between 0 and 0.9 and both SMAP_Reg and SMOSL3 tend to have higher SDV values 522 

than SMAP_SCA. Over the REMEDHUS sites, the three algorithms have a comparable 523 

performance but with a large variability (as defined by high SDV index) with the in situ 524 

observations; the correlation values range between 0.4 and 0.8. Over the PBO-H2O sites, 525 

SMAP_SCA patterns are closer to the in situ patterns than SMOSL3 and SMAP_Reg, which 526 

have larger SDV values than the in situ observations and most of the correlation values range 527 

between 0.5 and 0.9. Over the USCRN sites, the retrieved soil moisture values from all 528 

algorithms have a similar variability to that of the in situ observations, although SMAP_Reg 529 

and SMOSL3 soil moisture products have a larger variability for some sites. Over the RSMN 530 

sites, the three products present the same level of performance with respect to the in situ 531 

observations but all had higher SDV than the in situ observations. However, the correlations 532 

drop below 0.4 for a few sites for the three products. Over the DAHRA network, the 533 

SMOSL3 (best correlation) and SMAP_SCA product lie closest to the observed point 534 

followed by SMAP_Reg with higher SDV than the in situ observations for all products. Over 535 

the iRON sites, the correlations range from 0.4 to 0.8 for the SMOSL3 and SMAP_Reg. 536 

SMAP_SCA and SMAP_Reg are comparable in terms of variability and they are closer to the 537 

in situ patterns than SMOSL3. Over the Oznet network, the three products are comparable in 538 

terms of correlations (ranging from 0.6 to 0.9) and, similarly to the RSMN network, 539 

overestimate the in situ observations. Over the FMI sites, the correlations range from 0.4 to 540 

0.8 and 0.9 for SMAP_SCA and SMAP_Reg, respectively. Similarly, to what was obtained 541 

over the Oznet sites, the SMAP_SCA and SMAP_Reg products overestimate the in situ 542 
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observations over most of the sites. Finally, over SMOSMANIA, SMAP_Reg has better 543 

correlations, with in situ data ranging from 0.4 to 0.95, than the other two products. For 544 

SMOSL3, the correlations drop below 0.4 for a few sites. Overall, all three products have 545 

approximately the same level of performance in terms of variability but SMAP_SCA is 546 

slightly better in terms of temporal dynamics.  547 

 548 

 549 
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 550 

Fig. 8 Taylor’s diagrams for SMAP_Reg (in red), SMAP_SCA (in blue), and SMOSL3 (in green) over the FMI, DAHRA, iRON, and Oznet 551 
(upper panel), over SCAN, PBO-H2O, REMEDHUS, and RSMN sites (middle panel), and over SNOTEL, USCRN, and SMOSMANIA sites 552 

(lower panel). 553 
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In order to have a general idea on the overall performance of SMAP_SCA, 554 

SMAP_Reg, and SMOSL3, the average of the Bias, RMSE, and UnbRMSE values and the 555 

median of the correlation values for all sites were computed per each network. Given the 556 

different sizes of the networks, the varying sample sizes, and varying temporal and spatial 557 

autocorrelations, the values are only indicative and no statistical confidence levels are 558 

provided. It should be noted that the average and median values were only computed when 559 

the site has a number of observations > 15 and p-value <0.05. This is presented in Table 2 560 

and Fig. 9, which show the comparison statistics for the three algorithms i.e. SMAP_Reg, 561 

SMAP_SCA, and SMOSL3 against the in situ observations. It can be seen in Table 2 and Fig. 562 

9 that the best R scores (R > 0.80) for the three algorithms were obtained over the Oznet sites 563 

while the worst ones were observed over (R ~ 0.58) over the SNOTEL sites for SMAP_SCA 564 

and over the DAHRA and SMOSMANIA sites (R=0.51 and R=0.45 for SMAP_Reg and 565 

SMOSL3 respectively). SMOSL3 had highest R values over the DAHRA site while 566 

SMAP_Reg had highest R values over SMOSMANIA. Other than those two networks, 567 

SMAP_SCA had highest R values. However, both SMAP products i.e. SMAP_SCA and 568 

SMAP_Reg have comparable performance particularly in terms of correlation coefficients. In 569 

terms of unbRMSE, SMAP_SCA had lower values for all sites except in Oznet where the 570 

lowest values were obtained by SMOSL3. Even though it is difficult to compare absolute 571 

values at in situ locations, a comparison based on a large sample can give some indication of 572 

biases: the Bias values showed that all products are generally dry, except over RSMN, 573 

DAHRA, and Oznet (and FMI for SMAP_SCA). Unlike SMAP_Reg, a notable overall 574 

positive bias is obtained over FMI for SMAP_SCA (overestimation). The overestimation of 575 

in situ soil moisture observations over RSMN and FMI networks by SMAP_SCA is in line 576 

with the recent findings of Zeng et al. (2016).  577 

 578 
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 579 

 580 

Fig. 9 Bar charts showing Bias (m3/m3), R, RMSE (m3/m3), and UnbRMSE (m3/m3) between 581 

SMAP_SCA (in blue), SMAP_Reg (in red), and SMOSL3 (in green) and the observed soil 582 
moisture over the 11 networks used in this study.583 
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Table 2 Statistics of the evaluation of the SMAP_Reg, SMAP_SCA, and SMOSL3 against ground based measurements. The average (median 584 
for R instead of “average” as correlation is not additive) values were only computed for sites that have p_value < 0.05 and number of 585 

observations was higher than 15.   586 

Matric Bias (m
3
/m

3
) 

(mean) 

RMSE (m
3
/m

3
) 

(mean) 
R (median) 

UnbRMSE (m
3
/m

3
) 

(mean) 

 

       Algorithm 

 

Network 

(No of sites) 

SMAP_SCA SMAP_Reg SMOS 
L3 SMAP_SCA SMAP_Reg SMOS 

L3 SMAP_SCA SMAP_Reg SMOS 
L3 SMAP_SCA SMAP_Reg SMOS 

L3 

REMEDHUS 

(19) 
-0.021 0.007 -0.047 0.087 0.094 0.093 0.65 0.63 0.61 0.051 0.060 0.052 

PBO_H2O 

(76) 
-0.024 -0.008 -0.022 0.055 0.056 0.067 0.75 0.76 0.68 0.044 0.049 0.056 

RSMN 
(16) 

0.054 0.044 0.026 0.082 0.081 0.086 0.67 0.64 0.54 0.051 0.059 0.069 

SCAN 
(104) 

-0.022 -0.013 -0.026 0.075 0.085 0.090 0.73 0.70 0.60 0.050 0.058 0.063 

SNOTEL 
(125) 

-0.053 -0.052 -0.047 0.096 0.099 0.103 0.58 0.54 0.55 0.063 0.066 0.071 

USCRN 
(51) 

-0.027 -0.017 -0.034 0.075 0.081 0.091 0.70 0.71 0.61 0.046 0.054 0.059 

FMI 

(14) 
0.076 -0.032 - 0.109 0.085 - 0.61 0.59 - 0.029 0.035 - 

iRON 

(3) 

-0.094 -0.147 -0.182 0.104 0.153 0.190 0.64 0.54 0.50 0.036 0.039 0.051 

DAHRA 

(1) 

0.017 0.066 0.007 0.054 0.108 0.050 0.64 0.51 0.82 0.051 0.085 0.050 

SMOSMANIA 

(7) 

-0.070 -0.095 -0.097 0.110 0.123 0.127 0.63 0.69 0.45 0.045 0.042 0.062 

Oznet 

(34) 

0.016 0.040 0.005 0.091 0.112 0.080 0.85 0.84 0.86 0.074 0.089 0.064 

 587 
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4 Discussion   588 

We investigated the potential utility of a physically based multi-linear regression 589 

approach to retrieve soil moisture from two microwave remote sensing satellites that operate 590 

at L-band: SMOS and SMAP. The approach consists of two steps:  591 

(i) a calibration step to compute regression coefficients using SMOS TB and soil 592 

moisture over 2013-2014 (calibration period); and 593 

(ii) a production step to retrieve soil moisture from SMAP TB using the 594 

computed regression coefficients, for Apr 2015 to Jul 2016 (production 595 

period).  596 

4.1 SMAP and SMOS inter-comparison 597 

Before applying the regressions, an inter-comparison was made between SMOS and 598 

SMAP TBs and soil moisture. From the results (Fig. 3 & 4), it was shown that there is a very 599 

good agreement between the two datasets. However, small discrepancies (2 to 4 K of Bias) 600 

between the SMOS and SMAP TBs were found over most of the globe and high 601 

discrepancies were found particularly over regions affected by RFI (Western Europe, North 602 

Africa, etc.). This is not unexpected due to the fact that, as indicated in Section 2.1.1 and 603 

2.1.2, the SMOSL3 TB product provides TBs on top of the atmosphere and there is no 604 

correction for sky and atmosphere contributions whereas SMAP TB is provided at the 605 

surface. According to De Lannoy et al. (2015), a difference of less than 2 K for H-Pol TB and 606 

1 K for V-Pol TB at 40◦ incidence angle between SMOS TB and SMAP TB can be attributed 607 

to the contributions of the atmospheric and reflected sky (e.g., cosmic and galactic) 608 

radiations. This low difference can be explained by the fact that the effects of (i) the 609 

contribution of the atmosphere to TB (direct and reflected) and (ii) the attenuation effects due 610 

to the atmosphere, partially offset each other. Nevertheless, local and short-term values 611 

regularly exceed 5 K (De Lannoy et al., 2015). In addition, SMAP TBs are water-body 612 
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corrected while SMOS TBs are not. Thus, the SMOS and SMAP TBs do not correspond 613 

exactly to the same pixel coverage: the SMOS TBs correspond to the whole pixel, while the 614 

SMAP TBs correspond to the whole pixel, but excluding open water areas. As the emission 615 

of open water surfaces (~ 60 – 150 k) is small in comparison to the emission of soil and 616 

vegetation-covered surfaces, applying this correction leads systematically to an increase in 617 

the TBs values. Note that for pixels with a fraction of water bodies higher than 10%, data 618 

were filtered out. But even after this filtering, the water TB correction may have an impact on 619 

the TB values. This water TB correction may explain the warm "Bias" (~10 K) of the SMAP 620 

TBs with respect to the SMOS TBs over high latitude and boreal regions (where many pixels 621 

may contain lakes, rivers, wetlands, etc.). Excluding these regions, a small cold bias of 622 

SMAP TBs with respect to SMOS TBs can be noted (~3-6 K). Overall, a very good 623 

agreement was found globally between the SMAP and SMOS TBs data.  624 

4.2 Regression calibration and soil moisture production 625 

The regression model was run for each land cover category (defined here using the 626 

IGBP land cover map) separately and thus we obtained coefficients of each land cover 627 

category. These values vary from one land cover category to another, reflecting the different 628 

characteristics for each land cover category. These three parameters as indicated by Saleh et 629 

al. (2006) are a function of the soil type and roughness. The regression approach quality was 630 

evaluated in two ways: 631 

(i) first, we estimated soil moisture from SMOS TB and compared the predicted 632 

soil moisture (SMOS_Reg) to the reference (SMOSL3) using correlation and 633 

RMSE, over the calibration period (2013-2014). High correlations (R> 0.8) and 634 

low RMSE values were obtained between SMOS_Reg and the reference over 635 

the continental surfaces, indicating that the spatio-temporal dynamics of 636 

SMOSL3 was well captured by SMOS_Reg. However, some differences can be 637 
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noted in terms of magnitude over high to moderate vegetation areas and high 638 

latitude regions. This is not unexpected due to uncertainties in the SMOS 639 

datasets caused by the high vegetation attenuation effects in these regions, 640 

which is a major problem for most of the remotely sensed soil moisture 641 

retrievals (Vittucci et al., 2016; Wigneron et al., 2003); and 642 

(ii) Second, we estimated soil moisture from SMAP TB for the Apr 2015 to Jul 643 

2016 period (SMAP-Reg) and compared it to the original SMAP_SCA and the 644 

SMOSL3 soil moisture products against more than 400 sites over the world.  645 

Soil temperature is an important input in the radiative transfer equation and has a 646 

significant impact on the final estimate of the soil moisture retrievals (Holmes et al., 2012; 647 

Lv et al., 2016; Parinussa et al., 2011). In order to study how sensitive is the retrieved soil 648 

moisture to the soil temperature effects, we used soil temperature from two different 649 

sources: ECMWF and GEOS-5. We applied the regression coefficients to SMAP TB using 650 

these two products and then we compared with SMAP_SCA. It was found that in general 651 

the spatial patterns are similar for both products in terms of R and RMSE values; however, 652 

the correlations between SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5) are lower than 653 

the correlations between SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) over some 654 

regions (e.g., Sahara, Far Eastern Federal District, East-Central Canada, etc.). The better 655 

agreement between SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) does not necessarily 656 

mean that the quality of GEOS-5 is better than ECMWF. This could simply results from the 657 

fact that the same soil temperature product was used in both the regression approach and the 658 

SMAP_SCA algorithm. However, it does seem that soil temperature has an important 659 

impact on the soil moisture retrievals (e.g., Lv et al., 2016), i.e. using the same soil 660 

temperature leads to similar soil moisture retrievals from SMAP no matter if different 661 
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retrieval approaches are used. This could partially explain the strong agreement found 662 

between SMAP_SCA and SMAP_Reg.  663 

Results from the comparison between SMAP_Reg both (ECMWF & GEOS-5) and 664 

SMAP_SCA showed that SMAP_Reg is in agreement with SMAP_SCA, particularly in 665 

terms of temporal dynamics which is of high relevance (Crow et al., 2010; Liu et al., 2012). 666 

Moreover, it is noticed here that the performance of the "production" step i.e. comparison 667 

between SMAP_Reg and SMAP_SCA is much better than the "calibration" step i.e. 668 

comparison between SMOS_Reg and SMOSL3. This can be partly explained by three 669 

reasons: 670 

1- in the calibration step, the TBs used are not exactly the same while in the 671 

production step they are. More specifically, the SMOSL3 soil moisture product is not 672 

directly retrieved from SMOSL3 TB but from TB products in the Fourier domain (L1B); 673 

thus the TB used in the regression does not necessarily match the actual TB used to retrieve 674 

SMOSL3 soil moisture. Therefore it is expected that the temporal dynamics of the two soil 675 

moisture products will be more similar because they will be driven by the common input 676 

TB dynamics. This uncertainty, among others, may affect the quality of the calibration;  677 

2- the quality of SMAP TB seems to be very good and therefore whatever the 678 

used algorithm, the resultant soil moisture is the same particularly in terms of temporal 679 

dynamics. This, again, may partially explain the strong similarity between the two products 680 

i.e. SMAP_Reg and SMAP_SCA; and  681 

3-   the regression (LRM coefficients) is based on MERRA-Land TG, which is 682 

similar to the GEOS-5 product used in SMAP_SCA and not in SMOSL3 (for which the 683 

ECMWF product is used); explicitly indicating that soil temperature may play a crucial role 684 

in the quality of the SM retrievals. 685 

 686 
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4.3 SMAP_Reg soil moisture evaluation 687 

Results from evaluating both SMAP products and SMOSL3 against in situ 688 

observations showed that SMAP_SCA and SMAP_Reg soil moisture products have 689 

comparable performance with similar R values over the REMEDHUS, PBO_H2O, 690 

SNOTEL, SCAN, Oznet, and USCRN sites. Nevertheless, all three remotely sensed soil 691 

moisture products had poor performance over the SNOTEL. The poor performance of the 692 

three algorithms over the SNOTEL network can be attributed to several reasons: among 693 

them it should be considered that most of the SNOTEL sites are located in mountain regions 694 

with forests and freezing and thawing processes, more details on these aspects can be found 695 

in Al Bitar et al. (2012). It should be kept in mind that when using only the recommended 696 

retrievals for SMAP, there was no data left from the iRON sites. So the statistics for this 697 

particular network were based on data without considering if the retrieval was 698 

recommended or not but other filters were, however, applied.   699 

All remotely sensed soil moisture products underestimated generally the in situ 700 

observations used in this study. The bias values ranged from -0.095 m3/m3 (SMOSMANIA) 701 

to 0.066 m3/m3 (DAHRA) for SMAP_Reg, from -0.094 m3/m3 (iRON) to 0.076 m3/m3 (FMI) 702 

for SMAP_SCA, and from -0.182 m3/m3 (iRON) to 0.026 m3/m3 (RSMN) for SMOSL3. This 703 

so-called "dry" bias of SMOSL3 and SMAP_SCA is in line with previous studies (Al-Yaari 704 

et al., 2014b; Al Bitar et al., 2012; Chan et al., 2016; Dente et al., 2012). On the other hand, 705 

an overestimation was found over FMI (for only SMAP_SCA) and RSMN, DAHRA, and 706 

Oznet sites (for the three products). It should be kept in mind that FMI is a very specific 707 

network: the sites of FMI are located in high latitude regions with cold climate in which 708 

remotely-send soil moisture retrievals are influenced by the effects of soil freezing and 709 

thawing processes, organic matter in the soil substrate and the presence of numerous water 710 

bodies and bogs (Rautiainen et al., 2012; Zeng et al., 2016). The reasoning behind the 711 
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underestimation/overestimation of the in situ soil moisture values is a challenge. The dry bias 712 

could be related to the different spatial scales and sampling depths between the satellites and 713 

the in situ observations (e.g., Dorigo et al., 2015; Escorihuela et al., 2010; Rondinelli et al., 714 

2015). Moreover, although RFI was severely filtered from the SMOS datasets, it could be 715 

that some sources of RFI are still not filtered/detected, which can explain the rather general 716 

underestimation which is found in this study (Oliva et al., 2016). This was evident especially 717 

for SMOS as seen in Fig. 3 where SMOS still has higher TBs close to those regions despite 718 

filtering RFI. The reader is referred to Al Bitar et al. (2012) for a discussion on these 719 

questions. 720 

In terms of UnbRMSE, a comparable performance between SMAP_SCA and 721 

SMAP_Reg was found over the SMOSMANIA, iRON, and SNOTEL sites but lower values 722 

were obtained with SMAP_SCA over the other networks. SMOSL3 had generally higher 723 

UnbRMSE values than both SMAP_SCA and SMAP_Reg. However, SMOSL3 had lower 724 

values over the Oznet and DAHRA sites. 725 

It was noted from Table 2 and Fig. 9, that the SMAP TB-based soil moisture products 726 

(SMAP_SCA and SMAP_Reg) have a slightly better performance than SMOSL3 for most of 727 

the networks especially in terms of temporal dynamics. Although the three algorithms use TB 728 

at L-band and rely on the same radiative transfer equation (tau-omega model), they vary in 729 

many things (e.g., ancillary datasets, model parameterizations and assumptions). For instance, 730 

SMOS and SMAP use two different land cover maps: ECOCLIMAP 2004 (containing 213 731 

classes) for SMOS and MODIS IGBP (containing 17 classes) for SMAP, so it is likely there 732 

is a mismatch between the real land cover and the theoretical land cover used in SMAP and 733 

SMOS soil moisture retrievals leading to a different behavior of the soil moisture retrievals. 734 

This may also partially explain the similarity between SMAP_Reg and SMAP_SCA given 735 

the use of the same land cover. These differences were already noted in the direct inter-736 
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comparison between SMOSL3 and SMAP_SCA displayed in Fig. 4. The SMOS team is 737 

currently investigating the impact of land cover mapping and the possibility to replace the 738 

ECOCLIMAP map by the IGBP map in the SMOS soil moisture retrieval algorithm. 739 

Furthermore, the better performance of SMAP soil moisture products could be related to the 740 

enhanced quality of the SMAP TB observations due to an improved RFI mitigation and 741 

detection system (Piepmeier et al., 2016). Moreover, SMOS TB observations have a 742 

radiometric error of ~ 3 to 3.5 K while SMAP TB observations have a radiometric error of ~ 743 

1 K (De Lannoy et al., 2015). Finally, SMOS and SMAP use different surface soil 744 

temperature sources for their operational products. 745 

Based on the presented results, it can be noted that applying regression analysis to TB 746 

(from SMAP and SMOS) observed at L-band (1.4 GHz) gave better results compared to what 747 

was found by Al-Yaari et al. (2016), who applied the LRM algorithm to TB observed at C-748 

band (from AMSR-E; 6.9 GHz). This is not unexpected, as the simplifications and 749 

assumptions (e.g., neglecting the scattering effects) of the LRM method are more valid at L-750 

band. Moreover, both SMAP and SMOS observe TB at the same frequency i.e. L-band, 751 

which is considered optimal for soil moisture retrievals (Chan et al., 2016; Jackson, 1993). 752 

On the other hand, a similar behavior with Al-Yaari et al. (2016) of the regression 753 

coefficients that correspond to the H polarization and V polarization was found: low (high) 754 

coefficient values at H polarization correspond generally to high (low) values at V 755 

polarization over most of the regions. 756 

 757 

 758 

 759 
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5 Conclusions 760 

This study demonstrated the potential benefits of combining SMOS and SMAP 761 

datasets given the good performance of SMAP_Reg compared to SMOSL3 and SMAP_SCA 762 

original products over some regions. This in return shows the close similarity between SMOS 763 

and SMAP TB observations and highlights that an integration of SMAP and SMOS data sets 764 

to build a long term soil moisture record will be successful and higher temporal frequency. 765 

Finally, this first evaluation of preliminary SMAP products, and the inter-comparison with 766 

SMOS datasets provided insights and statistics that can be useful for SMAP/SMOS soil 767 

moisture product validation and SMAP/SMOS algorithm refinements and convergence on 768 

auxiliary data sets. A calibration of the soil and vegetation effects has been recently made 769 

(Fernández Morán et al., 2016). A new SMOS Level 3 soil moisture product integrating this 770 

new calibration and with a significantly improved accuracy is being produced. Future 771 

research will consider the calibration of SMAP-Reg with this new SMOS product and further 772 

fusion studies will be continued by applying LRM to the SMOS and SMAP datasets 773 

considering other important variables such as the vegetation opacity. 774 
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 Fig. 10 IGBP (International Geosphere Biosphere Programme) land cover classification 1101 
(Friedl et al., 2010) with the locations of the different in situ soil moisture sites (a) over 1102 
Australia (b), the USA (c), and Africa and Europe (d). 1103 

Fig. 11 The LRM (local regression method) algorithm: inputs (in blue), calibration step (in 1104 
red), and soil moisture production step (in green). 1105 

Fig. 12 Global inter-comparison between SMOS and SMAP TBs during the Apr 2015-Jul 1106 
2016 at both polarizations vertical (V-pol; left) and horizontal (H-pol; right): (a & e) 1107 

correlation, (b & f) RMSE, (c & g) Bias, and (d &h) UnbRMSE. Pixels with a number of 1108 
observations lower than 15 are indicated as blank areas. 1109 

Fig. 13 Global inter-comparison between SMOS and SMAP soil moisture retrievals during 1110 
the Apr 2015-Jul 2016: (a) correlation, (b) RMSE, (c) Bias, and (d) UnbRMSE. Pixels with a 1111 
number of observations lower than 15 are indicated as blank areas. 1112 

Fig. 14 Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil moisture 1113 
in 2013-2014 (a): intercept (a0), (b) slope of regression line corresponding to the horizontal 1114 
polarization (a1), and (c) slope of regression line corresponding to the vertical polarization 1115 
(a2).  1116 

Fig. 15 Comparison between the soil moisture values computed from the SMOS TB data 1117 

using LRM (SMOS_Reg) and the SMOS official level 3 soil moisture product in 2013-2014: 1118 

(a) correlation, R and (b) RMSE (m3/m3). Pixels with a number of observations lower than 15 1119 

are indicated as blank areas. 1120 

Fig. 16 Comparison between the SMAP-derived soil moisture applying LRM (SMAP_Reg) 1121 

using two different soil temperature products: GEOS-5 (left) and ECMWF (right) and the 1122 

SMAP level 3 soil moisture product (SMAP_SCA) from Apr 2015 to Jul 2016: (top) 1123 

correlation, R (-) and (bottom) RMSE (m3/m3). 1124 

Fig. 17 Taylor’s diagrams for SMAP_Reg (in red), SMAP_SCA (in blue), and SMOSL3 (in 1125 
green) over the FMI, DAHRA, iRON, and Oznet (upper panel), over SCAN, PBO-H2O, 1126 
REMEDHUS, and RSMN sites (middle panel), and over SNOTEL, USCRN, and 1127 

SMOSMANIA sites (lower panel). 1128 

Fig. 18 Bar charts showing Bias (m3/m3), R, RMSE (m3/m3), and UnbRMSE (m3/m3) 1129 
between SMAP_SCA (in blue), SMAP_Reg (in red), and SMOSL3 (in green) and the 1130 
observed soil moisture over the 11 networks used in this study.1131 
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Table 3 Regression coefficients of Eq. 1 calibrated using SMOS Level 3 TB and soil 1133 
moisture in 2013-2014: a0 represents the intercept, a1 and a2 represent the slope of regression 1134 
line corresponding to H-pol and V- pol, respectively. 1135 

Table 4 Statistics of the evaluation of the SMAP_Reg, SMAP_SCA, and SMOSL3 against 1136 
ground based measurements. The average (median for R instead of “average” as correlation is 1137 
not additive) values were only computed for sites that have p_value < 0.05 and number of 1138 
observations was higher than 15.   1139 
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